王大帅

发布者:周玉立发布时间:2022-06-04浏览次数:591

王大帅 博士

 WANG Dashuai, Ph.D.


职务:特聘研究员

研究所:工业生态研究所

研究方向:

计算能源材料

电催化剂设计

离子电池电极材料设计

功能导向晶体结构预测

邮箱:dswang@zju.edu.cn


个人简介

王大帅,河南南阳人。

2013年本科毕业于延边大学,理学院物理系,获学士学位;

2016年说是毕业于延边大学理学院,物理系,获理学硕士学位

2019年博士毕业于吉林大学新型电池物理与技术教育部重点实验室,获理学博士学位,主要从事离子电池电极材料设计与电化学机制研究。

2019年起在清华大学深圳国际研究生院深圳诺贝尔奖实验室(盖姆石墨烯中心)从事博士后研究工作,致力于电催化材料的理论研究。

2021年底全职加入浙江大学衢州研究院,任特聘研究员,从事能源存储与转换材料的第一性原理理论计算研究,功能导向的电极材料结构设计、电极材料的电化学性能预测、电子与离子传导机制、反应动力学等。



学术成果

王大帅博士致力于能源存储与转换材料第一性原理理论计算基础研究,在基于功能导向的电极材料结构设计、电极材料的电化学性能预测、电子与离子传导机制、反应动力学等方面的分析积累了丰富的经验,特别是二维材料体系在能源存储与转化等方面有深入的研究。已在国内外学术期刊上公开发表学术论文40余篇,其中以第一作者或通讯作者在国际化学/材料领域重要学术刊物如 J. Am. Chem. Soc.1篇)、ACS Nano4篇)、J. Mater. Chem. A5篇)和Chem. Eng. J.2篇)等发表19篇高质量论文,论文被引用1000余次,H-index17。先后参加计算纳米科学与新能源材料国际研讨会、国际MXenes学术研讨会、中国化学会学术年会分会并作口头报告,担任ACS Applied Energy MaterialsPhysical Chemistry Chemical physicsSolid State IonicsACS OmegaProcess Safety and Environmental ProtectionSCI期刊的审稿人。


代表论文(*通讯作者;#共同作者)

 (24)  Yang, P.#; Wang, D.#; Zhao, X.; Quan, W.; Jiang, Q.; Li, X.; Tang, B.; Hu, J.; Zhu, L.; Pan, S.; Shi, Y.; Huan, Y.; Cui, F.; Qiao, S.;Chen, Q.; Liu, Z.; Zou, X.*; Zhang, Y.* Epitaxial Growth of Inch-scale Single-crystal Transition Metal Dichalcogenides through the Patching of Unidirectionally Orientated Ribbons. Nat. Commun. 2022, Accepted.

 (23)  He, L.; Yang, D.; Zhao, H.; Wei, L.; Wang, D.*; Wang, Y.; Chen, G.; Wei, Y.* Bipolar CoSe2 Nanocrystals Embedded in Porous Carbon Nanocages as an Efficient Electrocatalyst for Li-S Batteries. Chem. Eng. J. 2022, 440, 135820.

 (22)  Chen, B.#Wang, D.#; Tan, J.; Liu, Y.; Jiao, M.; Liu, B.; Zhao, N.; Zou, X.*; Zhou, G.*; Cheng, H.-M.* Designing Electrophilic and Nucleophilic Dual Centers in the ReS2 Plane toward Efficient Bifunctional Catalysts for Li-CO2 Batteries. J. Am. Chem. Soc. 2022, 144 (7), 3106–3116.

 (21)  Zhong, X.#Wang, D.#; Sheng, J.; Han, Z.; Sun, C.; Tan, J.; Gao, R.; Lv, W.; Xu, X.; Wei, G.; Zou, X.; Zhou, G.* Freestanding and Sandwich MXene-Based Cathode with Suppressed Lithium Polysulfides Shuttle for Flexible Lithium–Sulfur Batteries. Nano Lett. 2022, 22 (3), 1207–1216.

 (20)  Wang, D.; Cao, R.; Hao, S.; Liang, C.; Chen, G.; Chen, P.; Li, Y.; Zou, X.* Accelerated Prediction of Cu-Based Single-Atom Alloy Catalysts for CO2 Reduction by Machine Learning. Green Energy & Environ. 2021. https://doi.org/10.1016/j.gee.2021.10.003

 (19)  Zhao, Y.; Yang, D.; He, T.; Li, J.; Wei, L.; Wang, D.*; Wang, Y.; Wang, X.; Chen, G.; Wei, Y.* Vacancy Engineering in VS2 Nanosheets for Ultrafast Pseudocapacitive Sodium Ion Storage. Chem. Eng. J. 2021, 421, 129715.

 (18)  Zhao, C.; Wang, D.*; Lian, R.; Kan, D.; Dou, Y.; Wang, C.; Chen, G.; Wei, Y.* Revealing the Distinct Electrochemical Properties of TiSe2 Monolayer and Bulk Counterpart in Li-Ion Batteries by First-Principles Calculations. Appl. Surf. Sci. 2021, 540, 148314.

 (17)  Chen, B.#Wang, D.#; Zhang, B.; Zhong, X.; Liu, Y.; Sheng, J.; Zhang, Q.; Zou, X.*; Zhou, G.*; Cheng, H.-M.* Engineering the Active Sites of Graphene Catalyst: From CO2 Activation to Activate Li-CO 2 Batteries. ACS Nano 2021, 15 (6), 9841–9850.

 (16)  Jia, H.#Wang, D.#; Li, Y.*; Liu, L.; Gu, H.; Yang, S.; Fu, Q.; Yan, X.*; Wei, Y. Mesoporous Niobium Nitride Nanowires Encapsulated in Carbon for High-Performance Lithium–Sulfur Batteries. ACS Appl. Nano Mater. 2021, 4 (3), 2606–2613.

 (15)  Liu, J.#Wang, D.#; Huang, K.; Dong, J.; Liao, J.; Dai, S.; Tang, X.; Yan, M.; Gong, H.; Liu, J.; Gong, Z.; Liu, R.; Cui, C.; Ye, G.*; Zou, X.; Fei, H.* Iodine-Doping-Induced Electronic Structure Tuning of Atomic Cobalt for Enhanced Hydrogen Evolution Electrocatalysis. ACS Nano 2021, 15 (11), 18125–18134.

 (14)  Liu, Y.#; Zhao, S.#Wang, D.#; Chen, B.; Zhang, Z.; Sheng, J.; Zhong, X.; Zou, X.; Jiang, S. P.*; Zhou, G.*; Cheng, H.-M.* Toward an Understanding of the Reversible Li-CO2 Batteries over Metal–N4 -Functionalized Graphene Electrocatalysts. ACS Nano 2021, 16 (1), 1523–1532.

 (13)  Wang, X.#Wang, D.#; Ma, C.; Yang, Z.; Yue, H.*; Zhang, D.*; Sun, Z.* Conductive Fe2N/N-RGO Composite Boosts Electrochemical Redox Reactions in Wide Temperature Accommodating Lithium-Sulfur Batteries. Chem. Eng. J. 2021, 427, 131622.

 (12)  Yang, L.; Wang, D.; Liu, M.; Liu, H.; Tan, J.; Wang, Z.; Zhou, H.; Yu, Q.; Wang, J.; Lin, J.; Zou, X.; Qiu, L.; Cheng, H.-M.; Liu, B.* Glue-Assisted Grinding Exfoliation of Large-Size 2D Materials for Insulating Thermal Conduction and Large-Current-Density Hydrogen Evolution. Mater. Today 2021, 51, 145–154.

 (11)  Guo, Z.#*; Wang, D.#; Zhang, L.; Fu, Q.; Wei, Y. Titanium‐Substituted Tavorite LiFeSO4F as Cathode Material for Lithium Ion Batteries: First‐Principles Calculations and Experimental Study. ChemPlusChem 2020, 85 (5), 900–905.

 (10)  Wang, D.; Li, F.; Lian, R.; Xu, J.; Kan, D.; Liu, Y.; Chen, G.*; Gogotsi, Y.*; Wei, Y.* A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti3C2T2 MXene in Lithium–Sulfur Batteries. ACS Nano 2019, 13 (10), 11078–11086.

 (9)  Wang, D.; Zhao, S.; Li, F.; He, L.; Zhao, Y.; Zhao, H.; Liu, Y.; Wei, Y.*; Chen, G.* Insight into the Anchoring and Catalytic Effects of VO2 and VS2 Nanosheets as Sulfur Cathode Hosts for Li–S Batteries. ChemSusChem 2019, 12 (20), 4671–4678.

 (8)  Xu, J.; Wang, D.*; Liu, Y.; Lian, R.; Gao, X.; Chen, G.; Wei, Y.* Theoretical Prediction and Atomic-Scale Investigation of a Tetra-VN 2 Monolayer as a High Energy Alkali Ion Storage Material for Rechargeable Batteries. J. Mater. Chem. A 2019, 7 (47), 26858–26866.

 (7)  Xu, J.; Wang, D.*; Lian, R.; Gao, X.; Liu, Y.; Yury, G.; Chen, G.; Wei, Y.* Structural Prediction and Multilayer Li + Storage in Two-Dimensional VC2 Carbide Studied by First-Principles Calculations. J. Mater. Chem. A 2019, 7 (15), 8873.

 (6)  Mu, X.#Wang, D.#; Du, F.; Chen, G.; Wang, C.; Wei, Y.; Gogotsi, Y.*; Gao, Y.*; Dall’Agnese*, Y. Revealing the Pseudo‐Intercalation Charge Storage Mechanism of MXenes in Acidic Electrolyte. Adv. Funct. Mater. 2019, 29 (29), 1902953.

 (5)  Zhao, Y.#Wang, D.#; Yang, D.; Wei, L.; Liu, B.; Wang, X.; Chen, G.; Wei, Y.* Superior Mg2+ Storage Properties of VS2 Nanosheets by Using an APC-PP14Cl/THF Electrolyte. Energy Storage Mater. 2019, 23, 749–756.

 (4)  Wang, D.; Zhao, Y.; Lian, R.; Yang, D.; Zhang, D.; Meng, X.; Liu, Y.; Wei, Y.*; Chen, G.* Atomic Insight into the Structural Transformation and Anionic/Cationic Redox Reactions of VS2 Nanosheets in Sodium-Ion Batteries. J. Mater. Chem. A 2018, 6 (33), 15985–15992.

 (3)  Wang, D.; Liu, Y.; Meng, X.; Wei, Y.; Zhao, Y.; Pang, Q.; Chen, G. Two-Dimensional VS2 Monolayers as Potential Anode Materials for Lithium-Ion Batteries and beyond: First-Principles Calculations. J. Mater. Chem. A 2017, 5 (40), 21370–21377.

 (2)  Wang, D.; Gao, Y.; Liu, Y.; Gogotsi, Y.*; Meng, X.; Chen, G.*; Wei, Y.* Investigation of Chloride Ion Adsorption onto Ti2C MXene Monolayers by First-Principles Calculations. J. Mater. Chem. A 2017, 5 (47), 24720–24727.

 (1)  Wang, D.; Gao, Y.; Liu, Y.; Jin, D.; Gogotsi, Y.*; Meng, X.; Du, F.; Chen, G.*; Wei, Y.* First-Principles Calculations of Ti2N and Ti2NT2 (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond. J. Phys. Chem. C 2017, 121 (24), 13025–13034.


会议报告

  1. 第十一届计算纳米科学与新能源材料国际研讨会:二维材料在新型离子电池中的第一性原理在研究;

  2. 第二届国际MXenes学术研讨会:A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of MXenes in Lithium-Sulfur Batteries;

  3. 中国化学会第三十二届学术年会分会:基于机器学习的铜基单原子合金CO2还原催化剂的理论研究。


课题组长期招聘博士后及联合培养研究生,欢迎具有化学、物理、材料、理论计算或交叉专业背景的学生加入课题组。有意向者请发送简历及代表论文至dswang@zju.edu.cn诚挚地欢迎加入!